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We show that the double copy of gauge theory amplitudes to N ¼ 0 supergravity amplitudes extends
from tree level to loop level. We first explain that color-kinematics duality is a condition for the Becchi-
Rouet-Stora-Tyutin operator and the action of a field theory with cubic interaction terms to double copy to a
consistent gauge theory. We then apply this argument to Yang-Mills theory, where color-kinematics duality
is known to be satisfied on shell at the tree level. Finally, we show that the latter restriction can only lead to
terms that can be absorbed in a sequence of field redefinitions, rendering the double copied action
equivalent to N ¼ 0 supergravity.
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Introduction and summary.—Yang-Mills scattering
amplitudes have been conjectured to satisfy a color-
kinematics (CK) duality [1–3]: each amplitude can be
written as a sum over purely trivalent graphs such that the
kinematical numerators satisfy the same antisymmetry
and Jacobi identities as the color contributions. CK duality
has been shown to hold at the tree level [4–12]. If it holds,
replacing the color contributions of a Yang-Mills ampli-
tude with another copy of the kinematical contributions
yields a gravity amplitude [3]. This is known as the double
copy prescription, and it has far reaching consequences
for our understanding of quantum gravity. For reviews and
references see Refs. [13–15].
Explicit nontrivial examples [2,16–36] have suggested

that the double copy extends to the loop level (i.e., to the
integrands of loop amplitudes). In this Letter, we argue that
this is indeed the case to any finite loop order.
Our approach builds on the ideas of manifestly CK-dual

classical kinematic structure constants and Lagrangians
[3,37–44]. A key ingredient in our argument is the Becchi-
Rouet-Stora-Tyutin (BRST) formalism and its enlarged
field space of external states [45]. We extend the idea that
the BRST framework can be double copied [44,46–51] and
double copy the complete BRST Lagrangian. See also
Ref. [32] for a powerful approach to loop-level CK-dual

amplitudes using the BRST invariance of the underlying
pure spinor superstring.
We make the crucial observation that on-shell, CK duality

violations due to longitudinal gluon modes can be compen-
sated by harmless field redefinitions of the Nakanishi-
Lautrup (NL) field. The Ward identities of the BRST
symmetry then allow us to transfer CK duality from gluon
amplitudes to those involving ghosts. Finally, on-shell tree-
level CK duality on the BRST-extended field space turns out
to suffice to show that the BRST-Lagrangian double copied
theory provides the loop integrands of a consistent pertur-
bative quantization of N ¼ 0 supergravity. We stress that
our results do not imply or rely on loop-level CK duality.
A longer paper giving explicit expressions for many of

the steps discussed only abstractly in the following and
explaining the origin of the double copy in terms of
homotopy algebras, mathematical objects unifying scatter-
ing amplitudes and BRST Lagrangians, is in preparation
[52]. There, we also intend to make a connection to the
observed nontrivial modifications of CK duality at the loop
level, cf., e.g., Refs. [53,54].
The BRST-Lagrangian double copy.—We start with an

abstract perspective on the double copy. Any Lagrangian
field theory is equivalent to a field theory with exclusively
cubic interaction terms, by blowing up higher order vertices
using auxiliary fields, cf. also Refs. [55,56]. A generic
cubic action is

S ¼ 1

2
ΦIgIJΦJ þ 1

3!
ΦIfIJKΦJΦK; ð1Þ

where the fields ΦI are elements of some field space F and
the DeWitt index I encodes all field labels (including
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position x). Summation and space-time integration over
repeated indices are understood. We are interested in
theories invariant under a gauge symmetry described by
a BRST operator Q.
It is not hard to see that by blowing up ghost vertices in

the Batalin-Vilkovisky (BV) action before gauge fixing,
one can always reduce the gauge transformations of all
fields to be at most cubic in the fields:

QΦI ¼ qIJΦJ þ 1

2
qIJKΦJΦK þ 1

3!
qIJKLΦJΦKΦL: ð2Þ

We further require that fields split into “left” and “right”
components (with independent left and right ghost
numbers), but over a common space-time point. Con-
sequently, we expand the DeWitt indices as I¼ðα; ᾱ;xÞ,
J ¼ ðβ; β̄; yÞ, and K ¼ ðγ; γ̄; zÞ and assume locality, so that
we obtain

gIJ ¼ δðx − yÞgαβðxÞḡᾱ β̄ðxÞ□; ð3aÞ

fIJKΦJΦK ¼ δðx − yÞδðx − zÞ
×
X

A;Ā

ðfAαβγ f̄Āᾱ β̄ γ̄Φββ̄Þðf0Aαβγ f̄0Āᾱ β̄ γ̄Φγγ̄Þ; ð3bÞ

with gαβ and ḡᾱ β̄ graded (with respect to the ghost numbers)
symmetric, and fδAβγ , etc., differential operators with constant

coefficients. The indices A and Ā range over the summands
in fIJK . To simplify notation, we define

fIJKΦJΦK ≕ gαδḡᾱ δ̄f
δ
βγ f̄

δ̄
β̄ γ̄
Φββ̄Φγγ̄: ð3cÞ

Suppressing the position dependence, the Lagrangian of the
theory becomes

L ¼ 1

2
Φαᾱgαβḡᾱ β̄□Φββ̄ þ 1

3!
Φαᾱfαβγ f̄ᾱ β̄ γ̄Φββ̄Φγγ̄; ð4Þ

where we used the shorthand fαβγfᾱ β̄ γ̄ for the evident
expression in Eq. (3c).
Analogously, we want the BRST operator to act on left

and right indices separately, and we split Q ¼ QL þQR
with

QLΦαᾱ ¼ qαμδᾱμ̄Φμμ̄ þ 1

2
qαμνf̄

ᾱ
μ̄ ν̄Φμμ̄Φνν̄

þ 1

3!
qαμνκ f̄αμ̄ ν̄ κ̄Φμμ̄Φνν̄Φκκ̄; ð5Þ

where f̄ᾱ
β̄ γ̄ δ̄

¼ 3f̄ᾱ
ε̄ δ̄
f̄ε̄
β̄ γ̄

and similarly for QRΦ.
As an example, consider the special case of cubic

Yang-Mills theory, where the gαβ and fαβγ are the compo-
nents of the Killing form and the structure constants of a
gauge algebra, respectively, while ḡᾱ β̄ and f̄ᾱ

β̄ γ̄
are the inner

product and kinematical structure constants on the full
BRST field space.
To double copy means to replace the left (or right) sector

with a copy of the right (or left) sector of some, not
necessarily the same, theory written in the form (4), (5). If
the resulting action S and BRST operator Q satisfy again
the relations Q2 ¼ 0, QS ¼ 0, we obtain a consistently
gauge-fixed theory ready for quantization.
It is not hard to see that Q2

L=R ¼ 0 iff Q2
L=R ¼ 0; the

condition QLQR þ QRQL ¼ 0 may induce further condi-
tions. For Yang-Mills theory, one readily computes that CK
duality suffices for the condition QS ¼ 0. If CK duality
fails to hold up to certain terms, then QS ¼ 0 also fails to
hold up to the same terms, possibly multiplied by other
fields and their derivatives. (Mathematically, the terms
describing the failure of CK duality generate an ideal in
the algebra of fields and their derivatives. The expressions
QS and Q2 take values in this ideal.)
Preliminary observations.—We are interested in pertur-

bative aspects and omit any nonperturbative issues. Also,
we are interested in n-point amplitudes up to l loops for n
and l finite. Thus, there is always a number N ∈ N so that
monomials of degree m > N can be neglected in the
Lagrangian. We always use the term “amplitude” for on-
shell states and the term “correlator” for off-shell states.
Although the quantization of Yang-Mills theory does not

require it, it is convenient to start from the BV form [57] of
the Yang-Mills Lagrangian on Minkowski space, using
canonical notation for all fields,

LYM≔−
1

4
Fa
μνFaμνþAþa

μ ð∇μcÞaþg
2
fabcc

þacbccþbac̄þa;

ð6Þ

with g the Yang-Mills coupling constant. We use the gauge
fixing fermion Ψ ≔ Ψ0 þ Ψ1 with

Ψ0 ≔
Z

ddxc̄a
�
ξ

2
ba − ∂μAa

μ

�
; Ψ1 ≔

Z
ddxc̄aψa;

ð7Þ

where ψa is of ghost number 0 and depends at least
quadratically on the fields and their derivatives. We obtain
the gauge-fixed Lagrangian

Lgf
YM ¼ −

1

4
Fa
μνFaμν − c̄a∂μð∇μcÞa þ

ξ

2
ðbaÞ2 − ba∂μAa

μ

þ δΨ1

δAa
μ
ð∇μcÞa þ

g
2
fabc

δΨ1

δca
cbcc þ ba

δΨ1

δc̄a
: ð8Þ

For ψa ¼ 0, we recover the Rξ gauges. The BRST trans-
formations are
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QYMca ≔ −
g
2
fabcc

bcc; QYMAa
μ ≔ ð∇μcÞa;

QYMba ≔ 0; Qc̄a ≔ ba; ð9Þ

satisfying Q2
YM ¼ 0 off shell.

The nonphysical fields enlarge the one-particle field
space of asymptotic on-shell states by four types of states:
the two unphysical polarizations of the gluon, called
forward and backward and denoted by A↑ and A↓, and
the ghost and antighost states [45]. All amplitudes will be
built from the n-particle form of this BRST-extended on-
shell field space, which carries an action of the linearization
of Eq. (9) denoted by Qlin

YM. The physical polarizations are
singlets, Qlin

YMAphys ¼ 0, and we have two more doublets:

A↑⟶
Qlin

YMc and c̄⟶
Qlin

YM b ¼ 1

ξ
∂μA↓

μ þ � � � ; ð10Þ

where the ellipsis indicates terms that arise from Ψ1.
Observation 1: The set of connected correlation func-

tions is BRST invariant because they can be written as
linear combinations of products of correlation functions.
Crucial to our discussion are the supersymmetric Ward

identities generated by the BRSToperator. We start with the
on-shell form, see, e.g., Refs. [58,59]. Since the free
vacuum is invariant under the action of Qlin

YM, we have
the following on-shell Ward identities:

0 ¼ h0j½Qlin
YM;O1 � � �On�j0i: ð11Þ

We now consider the on-shell Ward identity for
O1 � � �On ¼ A↑c̄ðcc̄ÞkAn−2k−2

phys and obtain

h0jðcc̄Þkþ1An−2k−2
phys j0i ∼ h0jA↑ðcc̄ÞkbAn−2k−2

phys j0i: ð12Þ

Thus,
Observation 2: Any amplitude with kþ 1 ghost-anti-

ghost pairs and all gluons transversely polarized is given by
a sum of amplitudes with k ghost pairs.
From the construction of amplitudes via Feynman

diagrams, it follows that we also have the following on-
shell Ward identity for an approximate BRST symmetry.
Observation 3: Suppose that QS ¼ 0 and Q2 ¼ 0 only

on shell. Then, we still have Eq. (11) together with a
corresponding identification of amplitudes with kþ 1
ghost-antighost pairs and all gluons transversely polarized
and a sum of amplitudes with k ghost pairs.
We shall also need the off-shell form of these Ward

identities,

∂μhjμðxÞO1ðx1Þ � � �OnðxnÞi

¼
Xn

i¼1

∓ δðx − xiÞhðQOiðxiÞÞΠj≠iOjðxjÞi; ð13Þ

where jμ is the BRST current. The left-hand side vanishes
after integration over x, and using observation 1, we can
restrict to connected correlators at a particular order in the
coupling constant g and then further to lowest order in ℏ,
i.e., to tree level. Consider now operators OiðxiÞ for those
restricted Ward identities which are linear in the fields.
Observation 4: The on-shell relations between tree

amplitudes from observation 2 induced by Eq. (11)
extend to (off-shell) tree-level connected correlators. For
example,

hAμðx1Þbðx2ÞAνðx3Þi
¼ h∂μcðx1Þc̄ðx2ÞAνðx3Þi þ hAμðx1Þc̄ðx2Þ∂νcðx3Þi: ð14Þ

Next, we make the following three general observations:
Observation 5: If two field theories have the same tree

amplitudes, then the minimal models of their L∞-algebras
coincide, cf. Refs. [55,56]. If they have the same field
content and kinetic parts, then they are related by a local
(invertible) field redefinition.
Observation 6: Two field theories are quantum equiv-

alent, if all their correlators agree. Since correlators can be
glued together from tree-level correlators (up to regulari-
zation issues), it suffices if the latter agree.
Observation 7:A shift of a field by products of fields and

their derivatives which do not involve the field itself does
not change the path integral measure. Local field redefi-
nitions that are trivial at linear order produce a Jacobian that
is regulated to unity in dimensional regularization [60–62],
see also Ref. [63]. Therefore, they preserve quantum
equivalence.
In our constructions, we will also exploit the possibility

of adjusting our choice of gauge. Performing shifts ba ↦
ba þ Xa andΨ1 ↦ Ψ1 þ Ξ1 with Ξ1 ≔

R
ddxc̄aYa induces

a shift of (8) by

ξ

2
ðXaÞ2 þ Xaðξba − ∂μAa

μÞ þ Xa δΨ1

δc̄a

þ δΞ1

δAa
μ
ð∇μcÞa þ

g
2
fabc

δΞ1

δca
cbcc þ ðba þ XaÞ δΞ1

δc̄a
: ð15Þ

If Xa is independent of the NL field ba, this modification
preserves the theory at the quantum level by observation 7.
Furthermore, if Xa is at least quadratic in the fields, this
transformation preserves the action of Qlin

YM on the BRST-
extended on-shell field space.
Consider now the special case ψa ¼ 0 and Xa indepen-

dent of ba and fix Ya iteratively such that the terms linear in
ba of Eq. (15) vanish:

ξXa þ δΞ1

δc̄a
¼ ξXa þ Ya þ c̄b

∂Ya

∂c̄b þ � � � ¼ 0: ð16Þ

This leads to the following observation:
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Observation 8: Terms in the Lagrangian of the form
ð∂μAμÞaXa with Xa at least quadratic in the fields and their
derivatives but independent of the NL field can be removed
in Rξ gauges by shifting the NL field. This creates addi-
tional terms (15) which are at least of fourth order and
preserve the amplitudes by observation 7.
Observation 9: Terms in the action that are proportional

to a NL field can be absorbed by choosing a suitable term
ψa. This leaves the physical sector invariant but it may
modify the ghost sector. Because NL fields appear as trivial
pairs in the BVaction, it is not hard to see that this extends
to general gauge theories, e.g., with several NL fields and
ghosts for ghosts.
We also make the following three observations regarding

the double copy.
Observation 10: The tree amplitudes of Yang-Mills

theory can be written in CK-dual form [4–12].
Observation 11: For amplitudes in CK-dual form, there

is a corresponding local, cubic, and physically equivalent
Lagrangian whose partial amplitudes produce the
kinematical numerators [39].
Observation 12: Double copying the Yang-Mills tree

amplitudes in CK-dual form yields the tree amplitudes of
N ¼ 0 supergravity [1–3].
CK-dual Yang-Mills theory.—In order to BRST-

Lagrangian double copy Yang-Mills theory, we first must
bring its action into the normalized form (4). Our goal
will be to construct abstractly a Lagrangian that guarantees
tree-level CK duality for the BRST-extended on-shell field
space.
CK duality of the Feynman diagrams for the field space

of physical gluons can be guaranteed by adding terms to the
Lagrangian [3,39] and subsequently strictifying these, i.e.,
introducing a set of auxiliary fields such that all interaction
vertices are cubic. This strictification is mostly determined
by the color and momentum structure of the additional
terms in the Lagrangian.
It remains to ensure CK duality for tree amplitudes

involving ghosts or backward polarized gluon states, which
we do by introducing compensating terms, preserving
quantum equivalence. (Forward polarized gluons can be
absorbed by residual gauge transformations and therefore
do not appear in the Lagrangian. Thus, they cannot
contribute to CK duality violations.)
We implement the necessary changes iteratively for

n-point amplitudes, starting with n ¼ 4. We can compen-
sate for CK duality violations due to backward polarized
gluons, which can be done by introducing terms of the form
ð∂μAμÞaXa. By observation 8, we can produce such terms,
preserving quantum equivalence, and we immediately
compensate for the additional terms linear in the NL field
using observation 9. Since we perform all shifts at the level
of the BVaction and the gauge fixing fermion, the resulting
action is automatically BRST invariant and its amplitudes
are CK dual for external legs of ghost number 0.

By observation 2, these amplitudes fully determine all
amplitudes with ghosts and antighosts on external legs.
Moreover, the CK-dual form of the former can be copied
over to the latter, by literally copying trivalent Feynman
diagrams for the gluon modes linked by the BRST
symmetry to the ghost-antighost pairs. We do this iter-
atively in the number of ghost-antighost pairs. The con-
sistency of the copying process is guaranteed by the full
BRST symmetry of the action. We then use observation 12
to turn these CK-dual amplitudes for arbitrary ghost
number into a local, cubic, and BRST-invariant Lagrangian.
The resulting Lagrangian LCK

YM is of the form (4) and
quantum equivalent to the Lagrangian LYM given in
Eq. (8).
The BRST-Lagrangian double copy of Yang-Mills

Theory.—We now turn to the N ¼ 0 supergravity side.
The gauge-fixed BRST Lagrangian LN¼0 of this theory is
readily constructed. The following two diagrams concisely
summarize the theory’s field content from the perspective
of the double copy, describing the symmetrized and
antisymmetrized tensor products of two copies of the
BRST Yang-Mills fields:

ð17Þ

Here, the physical fields of ghost number 0 are hμν
(containing the metric perturbation about the Minkowski
vacuum and the dilaton) and Bμν (the Kalb-Ramond two-
form). Ghost number increases by column from left to
right, and all vector or form indices are made explicit. The
arrows indicate factorization relations between the various
fields [52]. In addition to the expected BRST field content,
we have two trivial BV pairs ðδ; βÞ and ðβ̄; πÞ, see, e.g.,
Ref. [64] for the same fields in a different context. For more
details, see Ref. [52] as well as Refs. [44,46–49].
The double copy of QYM and LCK

YM yields a BRST
operator Q which satisfies Q2 ¼ 0 on shell and a
Lagrangian L for the field content (17). The latter is
quantum equivalent to the manifestly CK dual, cubic or
strict form Lst

N¼0
of N ¼ 0 supergravity obtained from

observation 11: (i) Kinematic equivalence.—The two
kinematic Lagrangians are equivalent and linked by
evident suitable field redefinitions [52]. The existence of
such a field redefinition is ensured by the linear double
copy BRST operator Qlin [44,48], which is equivalent to
the linear BRST operator Qst;lin

N¼0
and annihilates the

quadratic double copy Lagrangian [52]. We implement
the field redefinition on Lst

N¼0
, obtaining Lst;1

N¼0
. (ii) Ghost
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number 0, partly.— Since the classical Yang-Mills action
was written in a form with purely cubic, local interactions
with manifest CK duality to all points, the tree amplitudes
of L for physical fields match those of Lst;1

N¼0
, cf. observa-

tion 12. The amplitudes for auxiliaries of ghost number 0
are determined by collinear limits of amplitudes of
physical fields and thus also agree between the theories.
By observation 5, we can implement a field redefinition
Lst;1
N¼0

→ Lst;2
N¼0

such that the interaction vertices of Lst;2
N¼0

and L agree for physical and auxiliary fields of ghost
number 0 to any finite order. For these fields, also the
tree-level correlators agree, because the field redefinitions
preserve quantum equivalence by observation 7. (iii)Gauge
fixing sector.—The difference between L, after integrating
out all auxiliary fields, and Lst;2

N¼0
proportional to any of the

NL-like fields (β; β̄;ϖμ; π; γ; αμ; γ̄) can be absorbed in a
choice of gauge fixing which will only create new terms in
the ghost sector, cf. observation 9 for all fields except for β,
which requires a slightly different treatment [52]. We
implement this new gauge fixing, and take over the
strictification from L, obtaining Lst;3

N¼0
together with a

BRSToperatorQst;3
N¼0

. (iv)Ghost sector.—Starting from the
latter, we now use observation 2 to copy over the CK-dual
form of the amplitudes with external legs labeled exclu-
sively by fields of ghost number 0 to a CK-dual form of
amplitudes with ghost-antighost pairs on external legs. This
proceeds just as in the case of Yang–Mills theory and
consistency is again guaranteed by full BRST symmetry of
the action. By observation 12, we can then turn these CK-
dual amplitudes into a local, cubic, and CK duality
manifesting Lagrangian LCK

N¼0
physically equivalent to

Lst;3
N¼0

and thus to LN¼0.
Both L and LCK

N¼0
are local and have the same field

content. The tree-level correlators involving physical and
NL fields agree. Using the approximate Ward identities,
cf. Observation 3, and the fact that Qlin and QCK;lin

N¼0
agree,

we deduce that all tree amplitudes involving ghosts and
antighost pairs agree, too. By construction, this agreement
extends to individual onshell Feynman diagrams, between
the strictifications L and LCK

N¼0
, even for auxiliary fields:

we can iteratively split off external vertices with two
external legs, exposing Feynman diagrams with onshell
external but off-shell auxiliary fields. Up to a field
redefinition of the auxiliaries, these also must agree.
The only potential remaining difference between L and

LCK
N¼0

is then interaction terms containing □Γ and □Γ̄
terms for Γ a ghost field. Going through the construction,
one can argue that such terms, if they are there, have to
appear in the same way in L and LCK

N¼0
. Alternatively, one

can show that both theories satisfy the same Ward identities
for tree-level correlators, rendering them quantum equiv-
alent by observation 6. The simplest argument, however, is
to use observation 5 to note that both theories are related by

a local field redefinition. Observation 7 then implies that
both theories are quantum equivalent.

No additional research data beyond the data presented
and cited in this work are needed to validate the research
findings in this work.
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